π -CYCLOPENTADIENYLOXOCHLOROMOLYBDENUM ALKOXIDES

S. P. ANAND, R. K. MULTANI AND B. D. JAIN

Department of Chemistry, University of Delhi, Delhi-7 (India) (Received February 3rd, 1970; in revised form April 2nd, 1970)

SUMMARY

Some π -cyclopentadienyloxochloromolybdenum alkoxides have been prepared by the interaction of di- π -cyclopentadienyloxomolybdenum dichloride with various primary and secondary alcohols and by the interaction of oxodichloromolybdenum dialkoxides with either cyclopentadiene or its sodium derivative. They have the general formulae, π -C₅H₅MoOCl₂(OR) and π -C₅H₅MoOCl(OR)₂, where R is Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, or i-C₅H₁₁. The thermal stabilities and IR spectra are described.

INTRODUCTION

While a large number of derivatives of π -cyclopentadienylmolybdenum (VI) have been reported¹⁻⁹, there are only a few examples of π -cyclopentadienyl complexes of transition metals having one or more alkoxy groups attached to the metal atoms. These include the alkoxy derivatives of π -cyclopentadienyl complexes of titanium¹⁰⁻¹¹, zirconium¹², uranium and thorium¹³. Though tetraalkoxyoxo-molybdenum(VI) and dialkoxyoxodichloromolybdenum(VI)¹⁴ are known, there is no reference in the literature to π -cyclopentadienyl derivatives of molybdenum(VI) alkoxides. We recently described studies on mono and dialkoxy derivatives of π -cyclopentadienyloxochlorotungsten derivatives¹⁵⁻¹⁶ and we now report the preparation and some properties of π -cyclopentadienyloxodichloromolybdenum mono-alkoxides of general formula, π -C₅H₅MoOCl₂(OR) and π -cyclopentadienyloxomono-chloromolybdenum dialkoxides of general formula, π -C₅H₅MoOCl(OR)₂. Their preparation is represented by the following eqns.:

$$\begin{aligned} (\pi\text{-}C_5H_5)_2\text{MoOCl}_2 + \text{ROH} &\to \pi\text{-}C_5\text{H}_5\text{MoOCl}_2(\text{OR}) + \text{C}_5\text{H}_6 \\ (\pi\text{-}C_5\text{H}_5)_2\text{MoOCl}_2 + 2 \text{ ROH} + (\text{C}_2\text{H}_5)_3\text{N} \to \\ &\pi\text{-}C_5\text{H}_5\text{MoOCl}(\text{OR})_2 + (\text{C}_2\text{H}_5)_3\text{N} \cdot \text{HCl} + \text{C}_5\text{H}_6 \\ \text{MoOCl}_2(\text{OR})_2 + \text{C}_5\text{H}_6 \to &\pi\text{-}C_5\text{H}_5\text{MoOCl}(\text{OR})_2 + \text{HCl} \\ \text{MoOCl}_2(\text{OR})_2 + \text{NaC}_5\text{H}_5 \to &\pi\text{-}C_5\text{H}_5\text{MoOCl}(\text{OR})_2 + \text{NaCl} \end{aligned}$$

where R is CH₃, C_2H_5 , $n-C_3H_7$, $i-C_3H_7$, $n-C_4H_9$, $i-C_4H_9$ and $i-C_5H_{11}$. The compounds are diamagnetic.

EXPERIMENTAL

All reactions were carried out under anhydrous conditions and at reduced pressure. Dry tetrahydrofuran was further purified by distillation in presence of lithium aluminium hydride. $MoOCl_4^{17}$ was further purified by sublimation under vacuum at 140–145° and fresh $NaC_5H_5^{18}$ was used. Magnetic measurements were carried out on a Gouy Magnetic Balance. IR spectra were recorded on a Perkin–Elmer Infrared spectrometer Model 137.

Di- π -cyclopentadienyloxomolybdenum dichloride was prepared by refluxing 5.2 ml (0.063 mole) cyclopentadiene with 6.4 g (0.025 mole) MoOCl₄ in 100 ml THF. Volatiles were removed under reduced pressure, and the residue was treated with aqueous ammonia. The solid obtained was crystallized from diethyl ether or THF and dried over P₂O₅.

The compound $(\pi$ -C₅H₅)₂MoOCl₂ was also prepared by the interaction of NaC₅H₅ with MoOCl₄. To 9.6 g (0.037 mole) MoOCl₄ in 150 ml THF was added (0.07 mole) NaC₅H₅ and the contents were refluxed for 4–5 h at 90–95°. The cooled mixture was filtered and the residue was washed with THF. The filtrate and the washings on drying under reduced pressure yielded a dark brownish mass, which was crystallized from ether or THF to give reddish brown crystals of $(\pi$ -C₅H₅)₂-MoOCl₂. (Found: C, 38.3; H, 3.1; Cl, 22.6; Mo, 30.6. C₁₀H₁₀Cl₂MoO calcd.: C, 38.37; H, 3.22; Cl, 22.68; Mo, 30.65%)

This compound has also been prepared in our laboratories by the UV irradiation of a mixture of $MoQCl_4$ with monomer cyclopentadiene.

Preparation of π -C₅H₅MoOCl₂(OR) compounds

The mixture of 4.14 g (0.01 mole) of $(\pi$ -C₅H₅)₂MoOCl₂ 30 ml ethanol and 50 ml dry benzene was refluxed at 110° with stirring for 4–5 h. The greenish blue product obtained by evaporation of the resultant mixture under reduced pressure (10 mm) was extracted with THF and the extract evaporated under reduced pressure (5 mm). The residue on crystallization from petroleum ether (60–80°) yielded a greenish blue product. (Found: Cl, 23.8; Mo, 32.7; OC₂H₅, 15.3. C₇H₁₀Cl₂MoO₂ calcd.: Cl, 23.85; Mo, 32.71; OC₂H₅, 15.38%.) This compound is soluble in THF, acetone (brown solution), soluble in CH₂Cl₂, CHCl₃ and CCl₄ (green solution) but is insoluble in ether and benzene. It is very sensitive to moisture and is hydrolysed by dilute alkalies.

Methoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy and isoamyloxy compounds were prepared similarly by refluxing $(\pi - C_5 H_5)_2 MoOCl_2$ with suitable alcohols. Their characteristics and analytical data are given in Table 1.

Preparation of π -C₅H₅MoOCl(OR)₂ compounds

(a). From $(\pi - C_5 H_5)_2 MoOCl_2$. An alcoholic solution containing 4.13 g (0.010 mole) of $(\pi - C_5 H_5)_2 MoOCl_2$ in 40 ml benzene and 30 ml ethanol was refluxed for about 4 h at 110–115°. After the addition of 7.5 ml triethylamine, the mixture was refluxed for a further 10–12 h at 130°, then cooled. Triethylamine hydrochloride was filtered off under anhydrous conditions, and the filtrate was fractionally distilled and then evaporated under reduced pressure. The deep green residue was crystallized from petroleum ether (40–60°) to give greenish blue crystals of π -C₅H₅MoOCl-(OC₂H₅)₂.

R	Colour	Yield (%)	Time of reaction	Amount of alcohols	Amount of C_6H_6 added (ml)	Analysis found (calcd.) (%)		
			(11)	auteu (mi)		Мо	Cl	OR
CH3	Brownish green	80	4–5	30	40	34.4 (34.33)	25.2 (25.26)	11.2 (11.18)
C ₂ H ₅	Light green	85	5–6	35	50	32.6 (32.6)	24.1 (24.13)	15.5 (15.46)
n-C ₃ H ₇	Green	75	6	40	50	31.1 (31.16)	22.6 (22.70)	
i-C ₃ H ₇	Light green	78	7	40	45	31.2 (31.16)	22.7 (22.70)	19.3 (19.35)
n-C₄H9	Blue greenish	80	9	30	60	29.8 (29.79)	22.0 (22.01)	
i-C₄H9	Blue greenish	60	10	25	55	29.7 (29.79)	22.1 (22.01)	
i-C5H11	Deep blue greenish	65	12–13	25	40	28.5 (28.53)	21.1 (21.08)	

 π -Cyclopentadienylalkoxyoxodichloromolybdenum compounds. π -C₅H₅MoOCl₂(OR)

Methoxy and higher dialkoxy derivatives of $(\pi$ -C₅H₅)₂MoOCl₂ were prepared by using appropriate alcohols under similar conditions. Their characteristics and analytical data are given in Table 2.

TABLE 2

TABLE 1

π-CYCLOPENTADIENYLDIALKOXYOXOCHLOROMOLYBDENUM COMPOUNDS, π-C₅H₅MoOCl₂(OR)₂

R	Colour	Yield	Time of	Amount of	Analysis found (calcd.) (%)		
		(%)	(h)	(ml)	Мо	Cl	OR
СН,	Greenish orange	90	5	50	38.54 (38.54)	13.6 (13.66)	24.1 (24.09)
C ₂ H ₅	Orange red	80-85	7–8	60	33.3 (33.35)	12.3 (12.32)	31.6 (31.61)
n-C ₃ H ₇	Green	70	6	60	30.2 (30.35)	11.2 (11.21)	
i-C ₃ H ₇	Greenish brown	75	5–6	50	30.3 (30.35)	11.2 (11.21)	37.7 (37.71)
n-C₄H9	Green	60	10	60	27.9 (27.88)	10.3 (10.29)	
i-C₄H9	Green	65	10-11	70	27.7 (27.88)	10.2 (10.29)	
i-C5H11	Greenish blue	55	14-15 ,	60	24.7 (24.74)	9.5 (9.51)	

J. Organometal. Chem., 24 (1970) 427-433

(b). From $MoOCl_2(OR)_2$. 2.73 g (0.01 mole) $MoOCl_2(OC_2H_5)_2^{14}$ in 40 ml dry benzene was treated with (0.025 mole) sodium cyclopentadienide or 2.1 ml (0.025 mole) cyclopentadiene and the mixture after stirring was refluxed for 6 h at 110–115°. The resulting green blue solution was evaporated to dryness under reduced pressure (20 mm). The residue was extracted with methylene dichloride then dried under reduced pressure (5 mm) at room temperature. Crystallization from petroleum ether/acetone 1/1 gave blue green crystals.

The product was identical obtained by the method (a), above.

Other related dialkoxy derivatives with $R = CH_3$, n-C₃H₇ n-C₄H₉, i-C₄H₉ and i-C₅H₁₁ groups, were similarly prepared and their characteristics and analytical data are given in Table 2.

Preparation of isopropoxy derivative of π -C₅H₅MoOCl(OR)₂ by alcohol interchange method

A suspension of 3.5 g of π -C₅H₅MoOCl(OC₂H₅)₂, 30 ml isopropyl alcohol and 40 ml dry benzene, was refluxed for 7–8 h at 110°. Ethanol liberated in the reaction mixture was then azeotropically removed along with the benzene during a period of 6 h. Removal of all volatile material gave a residue, which was dried under reduced pressure (5 mm) to give a deep greenish product. This was crystallized from petroleum ether (40–60°) to give green crystals of π -C₅H₅MoOCl(i-OC₃H₇)₂. (Found : Cl, 10.7; Mo, 29.0; i-OC₃H₇, 25.6. C₁₁H₁₉ClMoO₃ calcd.: Cl, 10.72; Mo, 29.0; i-OC₃H₇, 25.69%)

The IR spectrum and the analytical data show the above compound to be π -C₅H₅MoOCl(i-OC₃H₇)₂:

RESULTS AND DISCUSSION

In the IR spectra of these compounds, in KBr pellets or nujol, shown in Tables 3 and 4 the presence of π -C₅H₅ rings is revealed by single C-H stretching bonds

TABLE 1	3
---------	---

IR SPECTRA OF π -C ₅ H ₄	MoOCl₂(OR)	COMPOUNDS	(cm ⁻¹)
--	------------	-----------	-------------------	---

R	π-C ₅ H ₅	Mo=O	Mo-O-R
СН3	3070 m, 1670 w, 1610 w, 1570 w,	970 m	1190 w
C₂H₅	1417 s, 1105 s, 820 m 3090 s, 1730 w, 1690 w, 167 vw, 1610 vw, 1420 s, 1109 m, 814 s	965 s	1150 s
n-C ₃ H ₇	3105 s, 1710 w, 1680 w, 1650 w, 1430 s, 1110 w, 810 vw	955 m	1135 m
i-C ₃ H ₇	3095 m, 1690 w, 1670 w, 1650 vw, 1610 vw, 1440 s, 1090 m, 805 m	960 s	1140 m
n-C ₄ H9	3110 m 1610 w, 1605 w, 1590 w, 1435 s, 1105 w, 795 m	960 m	1140 s
i-C₄H9	3095 s, 1715 w, 1680 w, 1650 w, 1445 s, 1095 m, 820 s	965 s	1145 s
i-C5H11	3115 m, 1710 w, 1630 w, 1590 vw, 1415 s, 1090 s, 815 m	990 s	1165 m

J. Organometal. Chem., 24 (1970) 427-433

TABLE 4

R	π -C ₅ H ₅	Mo=O	Mo=O=R
СН3	3050 m, 1710 w, 1650 vw, 1625 w, 1410 vs. 1105 m, 870 s	980 s	1160 w
C ₂ H ₅	3065 s, 1710 w, 1610 w, 1605 w, 1440 vs, 1120 m, 840 s	965 m	1130 s
n-C ₃ H ₇	3085 s, 1750 w, 1700 vw, 1650 vw 1445 s, 1100 m, 820 s	970 s	1140 m
i-C ₃ H ₇	3105 m, 1700 w, 1680 w, 1630 w, 1410 s, 1125 s, 835 m	985 s	1170 w
n-C ₄ H ₉	3090 m, 1730 w, 1610 w, 1590 w, 1425 s, 1090 m, 810 s	965 s	1160 s
i-C₄H9	3100 s, 1700 w, 1650 w, 1610 w, 1410 s, 1105 w, 825 s	940 m	1175 m
i-C₅H11	3070 m, 1710 w, 1690 w, 1650 w, 1420 s, 1095 m, 810 m	963 s	1145 w

IR SPECTRA OF π -C₅H₅MoOCl(OR)₂ compounds (cm⁻¹)

(3010–3120 cm⁻¹), C–C bands (asymmetric ring breathing) (1415–1445 cm⁻¹), and bands from C–H deformation of $C_5H_5^-$ ring (1010–1125 cm⁻¹). The bands at 810– 825 cm⁻¹ are attributable to C–H bending (out of plane deformation) as observed in cyclopentadiene itself²⁰. The vibrational bands at 1190 cm⁻¹ are attributable to methoxy, at 1140–1160 cm⁻¹ to ethoxy, and at 1110 and 1170 cm⁻¹ to isopropoxy groups, while the bands at 1090, 1120–1160 cm⁻¹ show the presence of butoxy and higher alkoxy groups in these compounds as with other metal alkoxy compounds^{21–23}. Absorption bands at 960 cm⁻¹ show the presence of the Mo=O bond^{24–25}. The weak bands in the region of 1600–1750 cm⁻¹ do not conclusively indicate the presence of any fundamental frequency of π -cyclopentadienyl metal compounds²⁶.

The compounds, π -C₅H₅MoOCl₂(OR) and π -C₅H₅MoOCl(OR)₂ are bluish green and are sensitive to moisture. They decompose without melting and do not sublime under vacuum. Table 5 gives the temperatures at which these compounds

TABLE 5

decomposition temperatures and loss in weight (%) of π -cyclopentadienyloxochloromolybdenum alkoxides

R	C₅H₅MoO	Cl₂(OR)	C5H5MoOCl(OR)2		
	Decompn. temp. (°C)	Loss in weight (%)	Decompn. temp. (°C)	Loss in weight (%)	
CH	87	41	83	40	
C,H,	105	44	97	46	
n-C ₁ H ₇	113	49	207	50	
i-C ₃ H ₇	110	48	105	50 .5	
n-C.H.	139	53	130	55	
i-CAHo	135	51.5	129	54	
i-C5H11	147	54.5	137	58.5	

undergo decomposition as indicated (i) by the change in colour from green blue to black blue, and (ii) by the decrease in their weights (recorded on a Koffler Block). It will be seen that the thermal stabilities of the above compounds increase as the size of the alkoxy group increases from OCH_3 to OC_5H_{11} .

The complexes are soluble in THF, acetone, dioxane, dimethoxy ether, dichloromethane, carbon disulphide, trifluoroacetic acid, and partly in benzene and diethyl ether.

The complexes are readily hydrolysed when treated with hot or dilute alkalies. They react rapidly with concentrated hydrochloric acid, and on warming red brown crystals of $(\pi$ -C₅H₅)₂MoOCl₂ are deposited. They reduce acidified potassium dichromate (12.5% H₂SO₄, N K₂Cr₂O₇).

The diamagnetic character of these compounds suggests that the Mo metal atom in these compounds is in hexa-valent oxidation state. Further the presence of Mo=O bond at ~960 cm⁻¹ in the IR spectra of these compounds indicates the presence of molybdenum-oxy grouping as found in MoOCl₄ molecule itself²⁵.

IR spectra, physical properties together with elemental analysis suggest the following formulae for these compounds: π -C₅H₅MoOCl₂(OR) and π -C₅H₅MoOCl(OR)₂, where R is CH₃ to C₅H₁₁ groups. The IR spectra of the above compounds also suggest that the linkage between C₅H₅⁻ rings to the metal atom retains the character of delocalised π -bonds, while the alkoxide groups are probably attached to the metal atom by σ -bonds, as is the case with other transition metal complexes¹⁰⁻¹³.

ACKNOWLEDGEMENT

The Junior author (S.P.A.) thanks C.S.I.R. New Delhi, India, for the award of Junior Research Fellowship.

REFERENCES

- 1 T. S. PIPER AND G. WILKINSON, J. Inorg. Nucl. Chem., 3 (1956-57) 104.
- 2 H. P. FRITZ, Y. HARISTIDUE, H. HUMMEL AND R. SCHNEIDER, Z. Naturforsch B, 15 (1960) 419.
- 3 M. L. H. GREEN, L. PRATT, J. A. MCCLEVERTY AND G. WILKINSON, J. Chem. Soc., (1961) 4854.
- 4 E. O. FISCHER, W. HAFNER AND H. O. STAHL, U. S. Pat., 3,006,940 (1961).
- 5 P. M. TREICHEL AND R. L. SHUBKIN, Inorg. Chem., 6 (1967) 1328.
- 6 R. B. KING AND K. H. PANNEL, Inorg. Chem., 7 (1968) 2356.
- 7 M. L. H. GREEN AND J. R. SANDERS, Chem. Commun., 18 (1967) 956.
- 8 M. L. H. GREEN, M. ISHAQ AND R. N. WHITELY, J. Chem. Soc., (1967) 1508.
- 9 M. G. HARRIS, M. L. H. GREEN AND W. L. LINDSELL, J. Chem. Soc. A, 10 (1969) 1453, 14 (1969) 2150.
- 10 A. N. NESMEYANOV AND O. V. NOGINA, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, (1961) 2146, (1963) 831; Dokl. Akad. Nauk SSSR, 134 (1960) 607.
- 11 RICHARD D. GORSICH, J. Amer. Chem. Soc., 82 (1960) 4211.
- 12 E. M. BRAININA AND R. KH. FREIDLINA, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, (1963) 835.
- 13 G. TER HAAR AND MICHAEL DUBECK, Inorg. Chem., 3 (1964) 1648.
- 14 S. K. ANAND, R. K. MULTANI AND B. D. JAIN, J. Inst. Chem., Calcutta, 61 (1969) 88.
- 15 S. P. ANAND, R. K. MULTANI AND B. D. JAIN, J. Organometal. Chem., 17 (1969) 423.
- 16 S. P. ANAND, R. K. MULTANI AND B. D. JAIN, Bull. Chem. Soc. Jap., 42 (1969) 3459.
- 17 R. COLTON AND I. B. TOMKINS, Aust. J. Chem., 18 (1965) 447.
- 18 G. WILKINSON, Org. Syn., 36 (1955) 476.
- 19 D. C. BRADLEY, R. K. MULTANI AND W. WARDLAW, J. Chem. Soc., (1958) 4647.
- 20 H. P. FRITZ, Advan. Organometal. Chem., 1 (1964) 279.

J. Organometal. Chem., 24 (1970) 427-433

- 21 H. A. ORY, Anal. Chem., 32 (1960) 509.
- 22 C. G. BARACLOUGH, D. C. BRADLEY, J. LEWIS AND I. M. THOMAS, J. Chem. Soc., (1961) 2601.
- 23 A. SYAMAL, D. H. FRICKS, D. C. PANTALEO, P. G. KIND AND R. C. JOHNSON, J. Less Common Met., 19 (1969) 141.
- 24 M. COUSINS AND M. L. H. GREEN, J. Chem. Soc., (1963) 889, (1964) 1967.
- 25 YU. YA. KHARITONOV, YU. A. BUSLAEV AND A. A. KUZAETSOVA, Zh. Neorg. Khim., (1966) 11; Chem. Abstr., (1966) 1595h.
- 26 R. D. NELSON AND E. R. LIPPINCOTT, Spectrochim. Acta, 10 (1958) 307.

J. Organometal. Chem., 24 (1970) 427-433

.